Research and Development at the Center for Precision Forming (CPF)

(Formerly Engineering Research Center for Net Shape Manufacturing, ERC/NSM)

www.cpforming.org
www.ercnsm.org

Phone: 614-292-6468, Fax: 614-292-7219
Dr. Taylan Altan, Professor and Director, altan.1@osu.edu
CPF and ERC/NSM Activities

Research for Industry and Government

Stamping Hydroforming Forging Machining

1) Material characterization <flow stress & formability>
2) Tribology < friction, lubrication & wear>
3) Process Modeling/Tool and Process Design
4) Metal Forming Presses (Mechanical, Hydraulic, Servo)
5) Short Courses/Training for Industry and Students
Material Characterization

Forging
- Simultaneous determination of flow stress and interface friction by FE based inverse analysis.
- Determination of flow stress by cylinder upsetting (for cold, warm, hot forging)

Stamping
- Bulge test for determining formability, flow stress and quality of sheet metal.
- Determination of flow stress and friction using the modified stretch forming test (room & elevated temperature)

Tube Hydroforming
- Hydraulic bulge test to determine flow stress of tubular materials and quality of tubes.
- Flow stress determination for Mg and Al tubes at elevated temperature using hydraulic bulge test.

Machining
- Determination of material flow stress data under practical machining conditions using cutting tests.
- Database on material properties for FEM simulation of machining
Tribology (Friction, Lubrication and Wear)

General
- Development of tribotests that emulate real production conditions
- Performance evaluation of lubricants/coatings used in various metal forming processes (Forging, Stamping and Hydroforming)
- Estimate the friction coefficient and reliable friction models for use in process simulation

Forging
- Development of replacements for phosphate coating used in forging, extrusion, and metal forming processes
- Investigation on effects of surface finish and die temperature on friction & lubrication

Sheet Metal Forming
- Investigation of tribological conditions in forming uncoated and galvanized AHSS/UHSS
- Performance evaluation of dry-film lubricants using the deep drawing test
- Performance evaluation of stamping lubricants at various temperatures using the ironing test with heated dies

Tube Hydroforming
- Improvement of tribological conditions in tube hydroforming by using environmentally friendly lubricant systems and textured tubes
- Evaluation of Twist Compression Test (TCT) for screening tube hydroforming lubricants
Process Modeling and Development
- Stamping, Sheet Hydroforming and Tube Hydroforming -

Stamping and Sheet Hydroforming

- Determination of optimum constant / variable blank holder force profiles for stamping using FEM
- Determination of blank shapes, die design and process sequence for progressive die stamping
- Design of mechanical joining process (clinching / crimping) using FEM
- Development of warm sheet forming processes for producing complex parts from Mg and Al alloys
- Design of dies and processes for sheet hydroforming

Tube Hydroforming

- Determination of optimum loading path (Axial feed Vs Time, Pressure Vs Time) profiles for tube hydroforming using FEM
- Design of warm tube hydroforming process for processing Mg and Al alloy tubes
- Design of engineered tubes to improve formability in tube hydroforming process using FEM
- Die design (prediction of die stresses, corner and fillet radii) and process feasibility
Tool and Process Design in Cold, Warm and Hot Forging (with or without flash)

- 3D Simulation of Aircraft Structural Components.
- Forging of Internal Combustion Engine Pistons from Aluminum Alloys.
- Multiple Action Cold Forging of Complex Shaped Parts (gears, transmissions)
- Prediction and Reduction of Die Wear and Failure in Precision Hot and Cold Forging
- Simulation to Compare Surface Quality in Billet Shearing
- Prevention of Ductile Fracture in Cold Forging (Chevron Cracks)
- Three Dimensional Finite Element Simulation of Orbital Forming of (Spindle/Bearing Assembly, Orbital forging of parts)
- Microforming of Medical Devices
- Increasing of Material Yield in Hot Forging Operations
Current Focus of Research
- Machining -

Design and Modeling of Machining Operations:

• Determination of material flow stress data under machining conditions
• Prediction and reduction of tool wear in cutting using FEM
• FEM modeling of multi-layer coated carbide tool and prediction of cutting temperatures
• 2-D simulation of serrated chip formation in HSC
• Effect of tool edge preparation on cutting performance (tool wear, tool fracture, machined surface quality)
• 3-D FEM modeling of cutting processes with nose- radiused tools
• FEM Modeling of ball burnishing processes and selection of process parameters
• Experimental analysis of tool wear for a coated tool with multiple coatings (KC9025)
• Prediction of residual stresses and white layer formation due to turning of hardened bearing steel using FEM